
z_"2

3 / ; :" ?

#
N91-17575

A HOL Theory for Voting

Paul S. Miner James L. Ca]dwell

Outline

• Introduction

• Proofs Comparing Majority and Plurality

• Proofs of Simple Reconfiguration Strategies

• Future directions

2

Introduction

• Central to fault-tolerant computing is redundancy mange-

ment.

• Common to proofs of fault-tolerance is a maximum fault

assumption.

If there are m or fewer faults in the system, then ...

• Typically a maximum fault assumption is rather restric-

tive. Usually, this is necessary to avoid assumptions about

the behavior of faulty channels.

-For Interactive consistency, in order to tolerate m

faults, 3m + 1 nodes are required.

- For a majority vote, 2m + 1 channels are required.

• A maximum fault assumption is useful because it allows

us to reason about fault tolerance in the presence of arbi-

trarily malicious fault behavior. However, analysis of the

architecture may establish certain scenarios in which the

assumption may be weakened.

3

• Should fault-tolerant systems incorporate features which

attempt to recover from failure combinations which exceed

the maximum fault assumption?

• If so, what is the proof obligation?

• At the very least, it is necessary to show that existing

proofs which depend upon the maximum fault assumption

still hold.

4

Hypothetical Scenario

Imagine that plurality voting circuit has been developed for use

in a a four channel fault-tolerant computing system. Suppose

that a designer is considering using this circuit in a system

which depends upon a majority vote in order to maintain cor-

rect system state.

Can this voting circuit be used in this system?

First we define existence predicates for majority and plural-

ity as follows:

VB.majority_ezists B =_ FINITE B A 3x.Inl < 21BIz

VB.plurality_exists B - 3x.Vx'.(x _ x') D IBIz, < IBI_

Where B is a bag_ IBI represents its cardinality, and IBI_
represents the count of x in B.

t Essentially a bag is a set without absorption. [a, a, b] = [b, a, a], but [a, b] ¢ [a, a, b]

6

From these we define the following functions:

VB.majority B = e x.[B[< 2[B[x

VB.plurality B = E x.Vx'.(x _ x') D IBIs, < IB]_

The property we need to prove is

VB.majority_ezists B D (majority B = plurality B).

The first step was to show that

VB.majority_ezists B 3 plurality_exists B

For this, we needed to prove the following lemma:

VB.FINITE B D (Vx y.(x _ y) D IBl_ _<(IBI- IB[x))

From this lemma, coupled with rewriting the right conjunct

of majority_exists to

3x.(IB I -IBIx)< IBIs,

and then using transitivity of '<' and '<' we can establish tile

existence of plurality from the existence of majority.

In order to show tile equivalence between majority and plu.

rality we needed to establish uniqueness from existence (i.e.

if it exists then its unique). This allowed us to substitute in

one side of the equation and then show that the chosen value

satisfied the predicate embedded in the other. 2

_Thanks to Brian Graham of the University of Calgary for submitting his methods of

dealing with the HOL choice operator ('e ' or '@') to the info-hol mailing list.

10

Once this was done we looked at proving some other simple

facts about voting which may be useful in the analysis of fault-

tolerant architectures. Specifically, we proved the preservation

of majority for a few common reconfiguration schemes.

• Graceful Degradation

• Perfect Spares

• Imperfect Spares

Of course, we neglected one of the more difficult aspects of

reconfiguration, namely that of correctly identifying the faulty

channel. All that we have done is prove a little bit of common

sense.

11

Graceful Degradation

The simplest reconfiguration strategy is graceful degradation.

This consists of removing a faulty channel and continuing pro-

cessing with one less channel of redundancy. The proof for

this case showed that a majority is preserved if a non-majority

clement is removed from consideration.

First we show existence

VB.Vz. majority_exists B D

(z _ majority B) D

majority_exists (B - x)

This essentially reduces to showing

IBI < 21BIz, _ (IBI- 1) < 21BIz,.

From existence we get uniqueness so we can then show

VB.Vx. majority_exists B D

e B)
(x _ majority B) D

(majority B = majority (B - x))

12

Perfect Spares

Sometimes, in addition to removing a faulty channel, a good

channel is added to the configuration. To capture this scenario,

we showed that the insertion of the majority element to a bag

preserved both existence and value of the majority.

VB. majority_exists B D

majority_exists((majority B) 0 B)

VB. majority_exists B D

(majority ((majority B) ® B) = majority B)

13

Imperfect Spares

Finally, recognizing that it is possible for spares to fail, it

was shown that the removal of a non-majority (e.g.failed) el-

ement coupled with the addition of an arbitrary element (of

thr proper type) ",dso preserves both existence and the value of

m;_jority.

VB. majority_exists B D

Vx x'. (x E B) D

(z _= majority B) D

majority_exists (x' ® (B - x))

VB. majority_exists B D

Vx z'. (x E B) D
(x # majority B) D

((majority (x' ® (B - x))) = (majority B))

14

Future Efforts

• Establish a base for reasoning about error manifestations

in order to reason about Fault Detection and Isolation.

When can you conclude that a redundant channel is

faulty?

• Explore the effects that incorporating a plurality voter

would have on the OS proofs.

This would require adding assumptions concerning the

behavior of faulty channels.

• Explore possible ways to incorporate rcconfiguration strate-

gies into the OS effort.

How do you differentiate between a perm_tnent and a

transient fault?

15

